Datafeeds special report

Click here to download the PDF
The Need for Feeds: More than Just Speed
Barely a decade ago, traders began eschewing traditional consolidated datafeeds in favor of direct feeds from exchanges, in their pursuit of lower latency. The markets were becoming faster, and everyone had to keep pace if they wanted to remain competitive. At first, these latency gains were fairly easy and inexpensive to achieve. But after plucking all the low-hanging fruit, firms found that more significant gains came at a much higher price, and eventually became a pursuit of diminishing returns for many firms, and now some firms are exiting that race rather than keep pouring money at it.
The markets did speed up-but only a small portion of the capital markets overall, meaning that those expensive low-latency infrastructures only served a very limited purpose. And with firms seeking to federate data as widely as possible across their enterprise for use in new areas, such as Big Data analytics, that small amount of low-latency data may not have sufficient uses elsewhere.
In effect, firms are looking to achieve the economies of scale that consolidators offer by centralizing data acquisition and delivery, while also being able to access broader datasets that offer them the ability to investigate and address new business opportunities. "It is increasingly hard for firms to develop and sustain a competitive advantage with speed alone.... Instead, firms differentiate their strategies in other ways, with diverse, high-quality data and analytics," says Brian Cassin, managing director at S&P Capital IQ. "The focus is more on putting together a complex strategy intermingling more data to make better decisions. Consolidated feeds make data consumption easier, offering high performance and bringing diverse content together into one delivery mechanism."
In addition, Alex Tabb, partner at Tabb Group, says firms are looking to eliminate complexity, which translates directly to costs. This means not only reducing the number of standalone, specialist data architectures (for low-latency data or otherwise), but also streamlining the number of relationships that a firm must maintain in order to obtain the data it needs. In this instance, a single consolidator can eliminate the need to work directly with multiple vendors, along with the costs inherent in maintaining those relationships.
In an era of Big Data, chasing every new data input is not an efficient use of firms' time. Firms make money from analyzing that data to create unique trading strategies; not from acquiring data. So, one might argue, leave the trading to the traders, and leave the consolidating to the consolidators.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@waterstechnology.com or view our subscription options here: https://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact info@waterstechnology.com to find out more.
You are currently unable to copy this content. Please contact info@waterstechnology.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@waterstechnology.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@waterstechnology.com
More on Data Management
M&G Investments replaces research platform with Bloomberg’s RMS
The chief investment officer of the London-based asset manager explains why the firm opted to use Bloomberg’s RMS platform for its research capabilities.
The TNS–Radianz deal hints at underlying issues in trader voice
Waters Wrap: As part of its cost-cutting program, BT shipped its Radianz unit to TNS, but the deal didn’t include its Trading & Command trader voice property. Anthony finds that interesting.
Fixed income data continues to challenge capital markets firms
A range of challenges facing fixed income market participants
PostSig nets $4.1M seed funding to fuel expansion
The vendor will use the funding to solidify its position tracking data contracts and to expand to other contract management needs in the capital markets and beyond.
Wall Street hesitates on synthetic data as AI push gathers steam
Deutsche Bank and JP Morgan have differing opinions on the use of synthetic data to train LLMs.
LSEG files to dismiss MayStreet lawsuit, citing no evidence of fraud
In its response to MayStreet’s complaint filed in May, lawyers for the exchange group characterize Flannery as having “seller’s remorse.”
AI fails for many reasons but succeeds for few
Firms hoping to achieve ROI on their AI efforts must focus on data, partnerships, and scale—but a fundamental roadblock remains.
Halftime review: How top banks and asset managers are tackling projects beyond AI
Waters Wrap: Anthony highlights eight projects that aren’t centered around AI at some of the largest banks and asset managers.