Personnel Choices
Whether efforts to improve data quality and consistency are happening in reaction to regulation and standards mandates, or of their own volition, the work is generating value for data management at a time when the volume of data to be managed is increasing and the resources to handle data are more scarce.
As data managers try to derive value from data quality and consistency initiatives (whether those are driven by regulation or not), they are finding that choices concerning personnel and resources are becoming key to coping with ever-increasing amounts of data to be processed through methods set in new initiatives.
Contending with rising data volumes is more than just a technology problem, explained Brian Miller, senior vice president, brokerage technology at Wells Fargo in St. Louis, speaking on the first day of the Sifma TechExpo this week. Staffing and processes must also "clearly" be part of the response, he said. "Do we have the right roles in the organizations to manage the data? That can be anything from data integrity managers and data stewards to the technology people who implement those processes."
Considering how to organize and deploy data staff requires "thinking differently," said Miller, echoing Apple's landmark ad campaigns. "Having the ability, the courage and wherewithal to undo everything your firm grew up with allows you to free up the resources to do it the right way," he said. One example of such an effort, given by Dilip Krishna, a director at Deloitte & Touche, is taking apart multiple data stores set up to serve different purposes, and then re-investing the resulting savings in a new, consolidated method.
Regarding the personnel piece, Miller cited Wells Fargo's distributed model. "It's not only for data talent but being able to use that talent within the financial services industry, which is the real challenge," he said.
David Kowalski, an information architecture executive whose most recent role was in the financial services industry, sees a federated approach to data management also being used. "That puts a lot of thought into finding a balance between figuring out what you really want, what kind of behavior you wanted to incent, and what kind of data and metadata needs to be reported to the top of the house," he said.
Whether your data management and personnel models are distributed widely or federated, willingness to depart from traditional approaches is proving increasingly necessary, as Miller and Kowalski say.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@waterstechnology.com or view our subscription options here: https://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact info@waterstechnology.com to find out more.
You are currently unable to copy this content. Please contact info@waterstechnology.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@waterstechnology.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@waterstechnology.com
More on Data Management
Market data costs defy cyclicality
Trading firms continue to grapple with escalating market data costs. Can innovative solutions and strategic approaches bring relief?
LSEG partners with Citi, DTCC goes on-chain, AI on the brain, and more
The Waters Cooler: Trading Technologies buys OpenGamma, CT Plan updates, and the beginning of benchmarking in this week’s news roundup.
AI & data enablement: A looming reality or pipe dream?
Waters Wrap: The promise of AI and agents is massive, and real-world success stories are trickling out. But Anthony notes that firms still need to be hyper-focused on getting the data foundation correct before adding layers.
Data managers worry lack of funding, staffing will hinder AI ambitions
Nearly two-thirds of respondents to WatersTechnology’s data benchmark survey rated the pressure they’re receiving from senior executives and the board as very high. But is the money flowing for talent and data management?
Data standardization is the ‘trust accelerator’ for broader AI adoption
In this guest column, data product managers at Fitch Solutions explain AI’s impact on credit and investment risk management.
As AI pressures mount, banks split on how to handle staffing
Benchmarking: Over the next 12 months, almost a third of G-Sib respondents said they plan to decrease headcount in their data function.
Everyone wants to tokenize the assets. What about the data?
The IMD Wrap: With exchanges moving market data on-chain, Wei-Shen believes there’s a need to standardize licensing agreements.
FIX Trading Community recommends data practices for European CTs
The industry association has published practices and workflows using FIX messaging standards for the upcoming EU consolidated tapes.