Golden Copy: Learning to Master the Machines
More machine learning efforts are arriving for financial data management, but are they well guided?

Does the industry's willingness to deploy artificial intelligence for data operations issues match its will to direct and check on how that AI is being used, and evaluate how useful it is?
This past week saw two new machine learning efforts for financial data management – Bloomberg's Liquidity Assessment Tool, just launched, and StockViews, a crowdsourcing investment platform that reaped new funding for applying machine learning and artificial intelligence to enhance its crowdsourced research on companies.
We have also seen other machine learning initiatives for financial data in recent weeks and months. In late February, Velocimetrics, a performance measurement and analytics provider, announced that it had added machine learning techniques to its market data quality solution.
Last year, WorkFusion executive Adam Devine shared how the company was applying artificial intelligence to the automation of repetitive data processing tasks. And IIROC, Canada's major self-regulatory organization, has completed a machine learning project to segment market participants.
Also last year, in this column, I identified AltX, Dataminr and Verafin as companies that are making use of machine learning in different ways to yield greater insights from data, whether for portfolio managers or for compliance purposes.
These add up to quite a few machine learning ventures, and could be just the tip of the iceberg within the financial industry. The question that must be asked is whether the hands guiding any or all of these efforts are using machine learning processes effectively to gain more useful insights from data in order to produce intelligence that is indeed actionable.
Often, the rationale for using machine learning is indeed automation of data processing, as WorkFusion does. Automating data processing produces efficiency, but doing so with artificial intelligence or machine learning is the key factor in raising data quality, or at least avoiding the decline in data quality that would inevitably occur in automation without an intelligence factor to reduce errors.
Since last year, judging by the emergence of these recent new ventures, confidence in machine learning and artificial intelligence seems to be continuing its rise. Yet even the efforts begun less recently must still build a track record of effectiveness and value for their users.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact [email protected] or view our subscription options here: http://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact [email protected] to find out more.
You are currently unable to copy this content. Please contact [email protected] to find out more.
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Printing this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email [email protected]
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Copying this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email [email protected]
More on Data Management
Waters Wavelength
Waters Wavelength Podcast: Episode 226 (M&A and people)
On this episode of the Wavelength Podcast, Wei-Shen and Tony talk about the importance of communication when it comes to M&A activity within a company.
Subscribe to Weekly Wrap emails
Most read
- Women and Technology & Data Awards 2021: All the Winners
- The curious case of Larry Fondren and DelphX
- Bloomberg RHub fee hike reflects cost pressures of regulatory reporting industry
- TRG Screen acquires Jordan & Jordan’s market data compliance & reporting unit
- Funds urged to scrutinize outsourcing models to reduce data leakage