Golden Copy: Long Road to Disruption
Will the industry's data management advances stay confined to merely upgrading current methods?
In this column in recent weeks, I've considered the application of a couple different newer technologies to the data management realm—"regtech" and artificial intelligence. Remarks by Jeff Zoller, chair of the International Securities Association for Trade Communication (ISITC), at that organization's annual conference this past week (and in a follow-up interview), highlighted just how far the financial industry may still have to go to completely replace data operations systems with better methods.
Zoller cited and elaborated on a categorization of technology efforts by digital analyst Brian Solis, who studies the effects of technology on business in his role with Altimeter Group. Solis lists three types of technology changes: iteration—improvements on how existing processes work; innovation—the use of new processes; and disruption—the use of new processes that make existing processes obsolete.
Zoller sees financial industry operations as being somewhere "right in the middle" between iteration and innovation. "We're not making the old ways obsolete," he says. "We're trying to figure out how to take the old things and just make them better and change them to some degree. Firms are still trying to take in traditional sets of investment data and use them in smarter ways."
Predictive capabilities, based on data, applied to the design of investment products and strategies, choosing investment managers, and determining institutional investment managers' behaviors with handling cash flows and growth, undoubtedly can be greatly improved through machine learning or artificial intelligence. Doing so would see the industry doing even more than just innovation—edging toward disruption by potentially making old prediction methods obsolete.
Unstructured data, such as investment behaviors and patterns, the tone of commentary that industry analysts offer, and social and economic behavior, if harnessed, can also support disruption—going beyond innovation, as Zoller points out. Overall, Zoller says, he isn't so surprised that the industry can be slow to react to potentially disruptive technology capability such as deriving insight from consumer behavior, but he sees it as "something we need to pick up the pace on."
More on Data Management
As datacenter cooling issues rise, FPGAs could help
IMD Wrap: As temperatures are spiking, so too is demand for capacity related to AI applications. Max says FPGAs could help to ease the burden being forced on datacenters.
Bloomberg introduces geopolitical country-of-risk scores to terminal
Through a new partnership with Seerist, terminal users can now access risk data on seven million companies and 245 countries.
A network of Cusip workarounds keeps the retirement industry humming
Restrictive data licenses—the subject of an ongoing antitrust case against Cusip Global Services—are felt keenly in the retirement space, where an amalgam of identifiers meant to ensure licensing compliance create headaches for investment advisers and investors.
LLMs are making alternative datasets ‘fuzzy’
Waters Wrap: While large language models and generative/agentic AI offer an endless amount of opportunity, they are also exposing unforeseen risks and challenges.
Cloud offers promise for execs struggling with legacy tech
Tech execs from the buy side and vendor world are still grappling with how to handle legacy technology and where the cloud should step in.
Bloomberg expands user access to new AI document search tool
An evolution of previous AI-enabled features, the new capability allows users to search terminal content as well as their firm’s proprietary content by asking natural language questions.
CDOs must deliver short-term wins ‘that people give a crap about’
The IMD Wrap: Why bother having a CDO when so many firms replace them so often? Some say CDOs should stop focusing on perfection, and focus instead on immediate deliverables that demonstrate value to the broader business.
BNY standardizes internal controls around data, AI
The bank has rolled out an internal enterprise AI platform, invested in specialized infrastructure, and strengthened data quality over the last year.